Symmetrization and Mass Comparison for Degenerate Nonlinear Parabolic and related Elliptic Equations
نویسنده
چکیده
We consider the solutions to various nonlinear parabolic equations and their elliptic counterparts and prove comparison results based on two main tools, symmetrization and mass concentration comparison. The work focuses on equations like the porous medium equation, the filtration equation and the p-Laplacian equation. The results will be used in a companion work in combination with a detailed knowledge of special solutions to obtain sharp a priori bounds and decay estimates for wide classes of solutions of those equations. 1991 Mathematics Subject Classification. 35B05, 35B40, 35J60, 35K55, 35K65, 47H20.
منابع مشابه
Symmetrization and Mass Comparison for Degenerate Nonlinear Parabolic
We consider the solutions to various nonlinear parabolic equations and their elliptic counterparts and prove comparison results based on two main tools, symmetrization and mass concentration comparison. The work focuses on equations like the porous medium equation, the filtration equation and the p-Laplacian equation. The results will be used in a companion work in combination with a detailed k...
متن کاملA weighted symmetrization for nonlinear elliptic and parabolic equations in inhomogeneous media
In the theory of elliptic equations, the technique of Schwarz symmetrization is one of the tools used to obtain a priori bounds for classical and weak solutions in terms of general information on the data. A basic result says that, in the absence of the zero-order term, the symmetric rearrangement of the solution u of an elliptic equation, that we write u∗, can be compared pointwise with the so...
متن کاملNonlinear Neumann Boundary Conditions for Quasilinear Degenerate Elliptic Equations and Applications
We prove comparison results between viscosity sub and supersolutions of degenerate elliptic and parabolic equations associated to, possibly non-linear, Neumann boundary conditions. These results are obtained under more general assumptions on the equation (in particular the dependence in the gradient of the solution) and they allow applications to quasilinear, possibly singular, elliptic or para...
متن کاملCordes conditions and some alternatives for parabolic equations and discontinuous diffusion ∗
We consider parabolic equations in nondivergent form with discontinuous coefficients at higher derivatives. Their investigation is most complicated because, in general, in the case of discontinuous coefficients, the uniqueness of a solution for nonlinear parabolic or elliptic equations can fail, and there is no a priory estimate for partial derivatives of a solution. There are some conditions t...
متن کاملA note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کامل